Seminar by Guang Zhu
Development of a hybrid SmEdA/SEA model for predicting the power exchanged between low and high modal density subsystems
Statistical modal Energy distribution Analysis (SmEdA) was developed from classical Statistical Energy Analysis (SEA). It allows computing power flow between coupled subsystems from the deterministic modes of uncoupled subsystems without assuming the SEA modal energy equipartition. SmEdA is well adapted in mid-frequency when the subsystems have not a very high modal density. However, for some systems e.g. the plate-cavity system, one subsystem can exhibit a low modal density while the other one a high one. The goal of the paper is then to propose an extension of SmEdA formulation that allows describing one subsystem by its deterministic modes, and the other one as a diffuse field statistically supposing modal energy equipartition. The uncertain subsystem is then characterized by sets of natural frequencies and mode shapes constructed based on the Gaussian Orthogonal Ensemble matrix and the cross-spectrum density of a diffuse field, respectively. This formulation permits not only the computation of mean noise response but also the variance generated by the uncertainties and furthermore without bringing in much computation. It is demonstrated that the obtained analytical results from the proposed hybrid SmEdA/SEA are consistent with numerical results computed by FEM with an appropriate degree of uncertainty.
This seminar will be held online. Click here to join the Zoom event.
Informations complémentaires
-
This seminar will be held online.